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Abstract 

We describe iterative decoding of binary codes from incidence matrices of complete graphs. Parameters 

for these codes are well known. The codes are also known to be low density parity-check (LDPC). We 

determine cases where they are decodable by bit flipping (BF) and sum product (SP) decoding 

algorithms.  

Let   be a codeword from the binary code from an incidence matrix of a complete graph. Suppose   

is sent through the binary symmetric channel (BSC) with parameter  . Let N  and   be the length 

and dimension of the code respectively. We show that errors occurring in the first   positions are 

correctable by SP while those occurring in the last N −  positions are correctable by BF. 

Keywords: Binary Symmetric Channel, Bit flipping; Complete graphs; Incidence matrix; LDPC 

codes; Linear code; Sum product; Tanner graph. 

Introduction  

Low-density parity-check (LDPC) codes were introduced by Robert Gallager [4] in 1960. This is a 

class of linear block codes fully described by their parity check matrices. A parity check matrix for an 

LDPC code contains only a small number of nonzero entries. These codes are represented by Tanner 
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graphs introduced in [12].  

In this paper we describe binary LDPC codes from incidence matrices of complete graphs. These 

codes are decoded by permutation decoding in literature [9]. However, the permutation decoding sets 

(PD-sets) found are not close enough to the Gordon bound described in [8], [10] and [11]. Therefore, it 

makes sense to consider other decoding algorithms. 

LDPC codes are preferred because of their iterative decoding algorithms. Some examples of the 

general message-passing decoding algorithms are bit flipping (BF) and sum product (SP). We have been 

successful in generalising that both BF and SP algorithms work for binary codes from incidence matrices 

of complete graphs. In both cases we have used the binary symmetric channel with parameter  . 

In iterative decoding, messages are passed between bit nodes and check nodes of the Tanner graph 

until a valid codeword is found or the number of iterations is exhausted and the decoder gives up. We 

show that only one iteration is required to converge to a sent codeword.  

The rest of this paper is organised as follows. In Section 2 we present background review of graphs 

and related codes which are of interest to us. We introduce LDPC codes and their decoding. Finally in 

Section 3 we describe the codes from incidence matrices of complete graphs. We give the result on the 

girth of the Tanner graphs of the codes before we conclude with a look at the decoding of the codes. 

Preliminaries 

A graph is a pair ( )V EΓ = ,  of sets such that {2}E V⊆ , where {2}V  is the set of 2-element 

subsets of the set V  [2]. ( )V V= Γ  is the vertex-set of Γ  while ( )E E= Γ  is its edge-set. If 

{ } E= , ∈    then we write [ ]= ,   . In this case   and   are adjacent and are incident with the 

edge [ ],  . The degree (or valency) of a vertex   is the number of vertices adjacent to it. A 

-regular (or simply regular) graph is a graph in which all vertices have the same degree  . 

A walk of length   in a graph Γ  is a sequence 1 2, , .....,     of vertices such that 1[ ] E− , ∈    

for 1 ≤ ≤   [1]. A walk is closed if it starts and ends at the same vertex. It is a trail if all edges 

appearing in it are distinct. If all vertices in a walk are different, then a walk is called a path. If there exists 

a path between any two vertices of a graph Γ , then the graph is said to be connected. A cycle is a closed 

trail with no repeated vertices other than the starting and ending vertices. The girth of a graph is the size 

of its smallest cycle. 

Let X  be a non-empty set. A complete graph XK  is a graph on X  in which every pair of 
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vertices is adjacent. If X| |=   then XK  is denoted by K . The complete graph K  has 
2

 
 
 
 
 


 edges. 

It is well known that a complete graph is super- . If the vertex-set of a graph can be partitioned into two 

non-empty subsets U  and V  such that each edge has one endpoint in U  and another endpoint in V , 

then the graph is bipartite. Bipartite graphs are characterised by the property that they have no odd cycles. 

An incidence matrix ( )B =   of a graph Γ  is a matrix whose rows and columns are indexed by 

vertices and edges respectively and 1=  if the  th vertex is incident with the  th edge and 0=  

otherwise. 

A binary [ ]N , ,   linear code C  is a  -dimensional subspace of 2
N , the vector space of N

-tuples over a finite field 2  [5]. The hamming distance between any two codewords of C  is at least 

 . A generator matrix of a linear code is a matrix whose rows form a basis for the code. A generator 
matrix G  is in standard form if it is written in the form 

( )|kG I X=  (1) 

where kI  is a ×   identity matrix and X  is some matrix. 

The dual of C  is the set C⊥  of vectors which are orthogonal to elements of C , i.e.,  

{ ( ) 0NC⊥ = ∈ : , =    for all }C∈  

where (,) denotes the standard inner product in 2
N  [6]. A generator matrix for C⊥  is called a 

parity-check matrix for C . If G  is in form (1), then a parity check matrix is found to be  

 |T
N kH X I 

 − 
= .  (2) 

For all 1( )N C= ,..., ∈     

 0T TH = .  (3) 

This follows from the definition of H .  

The matrix multiplication in Equation (3) gives rise to check equations in the form  

 0+ ...+ =    (4) 
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where 1 N≤ ≤ .... ≤ ≤   depending on non-zero positions of the entries in each row of H .  
The binary symmetric channel (BSC), with crossover probability (parameter) 1 2< / , is a 

memoryless communication channel with channel alphabet {0 1},  and transition probabilities  

P(1 received |0 sent) = P(0 received |1 sent) =  ,  

P(1 received | 1 sent) = P(0 received | 0 sent) = 1−  .  

A low-density parity-check (LDPC) code is a linear code with a sparse parity check matrix. It is 

represented by a bipartite graph called Tanner graph. A Tanner graph has two sets of vertices: N  

vertices for the codeword bits (called bitnodes), and N −  vertices for the parity check equations 

(called check nodes). An edge joins a bit node to a check node if that bit is included in the corresponding 

parity-check equation.  

An LDPC code is (  , ) -regular if in each column of its parity-check matrix there are   

non-zero entries and each row has   non-zero entries, otherwise it is irregular.  

LDPC codes are decoded by passing of messages along the edges of a Tanner graph. This is why the 

decoding algorithms are collectively called message-passing algorithms.  

The first step in BF decoding is to make a binary (hard) decision about each received bit before 

passing it to the decoder. This means changing each symbol to binary. In this conversion a negative 

number corresponds to the bit 1 while a positive number corresponds to the bit 0   

Each binary bit of the received word is initialised to the corresponding bit node. Each bit node sends 

a message to all its connected check nodes. This message, labelled M   for  -th bit node, is the value of 

the bit itself, i.e., each bit node sends a ‘0’ or a ‘1’. Upon the receipt of messages from various bit nodes, 

each check node determines that its parity-check equation is satisfied if the XOR of the incoming bit 

values is zero.  

The notation B  is used to represent the set of bit nodes connected to the  -th check node. Each 

check node sends a message to each connected bit node, declaring what value the bit is based on the 

information available to the check node. This message, labelled E ,   for the message from  -th check 

node to  -th bit node, declares the value of the  -th bit ‘1’ or ‘0’ as determined by the  -th check node. 

The  -th check node with parity-check equation 0+ + .... + =      sends the message  

 
B

E M ′,
′ ′∈ , ≠

= ∑


  
  
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to each  -th bit node. As usual, the addition here is done over the binary field.  
We use A  to represent the set of check nodes connected to the  -th bit node. After receiving the 

messages from all the check nodes connected to it, each bit node determines the number of messages that 
differ with its received value. If the majority of messages received are different from its received value, 
the bit node flips its current value.  

The process described above is repeated until all the parity-check equations are satisfied which means 

that bits in the bit nodes form the most likely codeword sent. Often times the number of maximum 

iterations, which is believed to produce a valid codeword, is set. If after such iterations, no valid codeword 

is produced, the decoder gives up.  

The bit flipping decoding algorithm is presented in [7]. Input is the hard decision on the received 

vector and the maximum number of iterations.  

The sum product (SP) algorithm is similar to BF algorithm described above. The major difference 

between the two is the type of messages passed between nodes. Unlike BF, SP is a soft decision 

message-passing algorithm which accepts real numbers as inputs. These numbers are expressed as log 

likelihood ratios (LLRs).  

Given the received vector  , before passing it to the decoder, the a priori LLR   is calculated for 

each received bit  . For the BSC with crossover probability  ,  

 
ln     if 11

1ln     if 0

 = , −=  − = .



















 

To begin decoding, the  -th bit node sends the message M =   to the  -th check node 

connected to it. 
After receiving various messages from its connected bit nodes, each check node sends messages 

depending on the information available to it. The  -th check node sends the following message to the 

-th bit node:  

 

1 tanh( 2)
ln

1 tanh( 2)
B

B

M
E

M

′,
′ ′∈ , ≠

,
′,

′ ′∈ , ≠

 + /
 

= . − / 
 

∏

∏




 
  

 

 
  

 (5) 

After receiving messages from all the neighbouring check nodes, LLR value L  is calculated on 

each bit node. Since each bit has access to the input a priori LLR,  , and the LLRs from every connected 
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check node, the total LLR of the  th bit is the sum of these LLRs:  

 
A

L E ,
∈

= + .∑


   


  (6) 

At this stage we have a vector L  whose length is the length of the code. This vector is converted to 

a binary vector Z  using hard decision. To see if this is a valid codeword, we check whether 0TZH =  
is satisfied. If it is not satisfied, we begin another iteration.  

For the second and subsequent iterations, the messages sent from the bit nodes to the check nodes, 

M  , are not the full LLR value for each bit. To avoid sending back to each check node information 

which it already has, the message from the  th bit node to the  th check node is the sum in Equation (6) 

minus the component E ,   which was just received from the  th check node:  

 j i
A

M E ′,
′ ′∈ , ≠

= + .∑


 
  

  (7) 

SP decoding algorithm is presented in [7]. Input is the LLRs for the a priori message probabilities. 

The Binary LDPC Codes 2() from Incidence Matrices of Complete Graphs 

 

We give properties of the code 2 ( )C B  from an incidence matrix of a complete graph K  4≥ .  

The following theorem is a summary of our results.  

Theorem 3.1. Let 2 ( )C B  be the binary code from an incidence matrix of a complete graph K .  

1. 2 ( )C B  is an irregular LDPC code.  

2. The Tanner graph for 2 ( )C B  has girth 6.  

3. Let 1 2 ( )N C B= ,..., ∈     be sent through the binary symmetric channel (BSC) with 

parameter  . Then  
(a) sum product decoding algorithm corrects the errors if they occur in the first 

2( ( ))C B=    positions of   and 0 22≤ . . Furthermore, correction of errors 

occurs after only a single iteration.  
(b) any errors occurring in the last N −  positions are not correctable by sum 
product.  
(c) any errors are correctable by bit flipping if and only if they occur in the last 
N −  positions. Successful decoding is also achieved after performing only a single 
iteration.  
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The proof of Theorem 1 follows from Propositions 2 and 3 and Theorems 4, 5, 6 and 7.  
Let B  be an incidence matrix of a complete graph K . We write B  as follows. Rows of B  

are indexed by vertices 1 2, , ..., , in that order, while the columns of B  are indexed by edges [1 2], , ... ,

[1 ], ,[2 3], , ... ,[2 ], , ... ,[ 1 ]− ,  , in that order. Hence  

3

1 1 0
1 0 1
0 1 1

B
 
 = . 
 
 

  

For 4≥ , the matrix B  has size 
2

 
 
 
 
 

×


  and takes the form  

 
1 1

11 1 00 0
B

I B

 
 
 
  − − 

.... ....
=

 

 (8) 

where 1I −  is an identity matrix of size 1−  and 1B −  is an incidence matrix of 1K − .  

Since B  is made up of weight-2 column vectors, its rows are linearly dependent over 2 . 

However, removing any single row gives a matrix whose rows are linearly independent. We remove the 

first row and let 2 ( )C B  be generated by the remaining 1−  rows. Hence the remaining rows of B  

have the form  

 ( )1 1|B I B∗
− −= .    (9) 

The code 2 ( )C B  is an 2[ 1 1]
2

 
 
 
 
 

, − , −


   linear code [9].  

By Equation (2) a parity-check matrix H  for 2 ( )nC B  has the form  

 
1

2
1| n

T
nH B I

 
 
 
 
  −  

    

−= .  (10) 

Observe that the weights of columns of parity check matrix H  are different. Hence the following 
proposition is immediate. 

Proposition 3.2. The binary code from incidence matrix of a complete graph 2 ( )C B  is an irregular 

LDPC code.  
However, note that each of the two sub-matrices 1

TB −  and 
1

2

I − 
 
 


 in H  is regular. It is also clear 

that every row of H  is a weight-3 vector. 
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Existence of a 4-cycle in a Tanner graph comes as a result of two columns of a parity check matrix 

overlapping in two positions [3]. This implies that after performing column (or row) permutations in the 

parity-check matrix, we have a sub-matrix of the form  

 
1 1
1 1

D  
= . 

 
 (11) 

Proposition 3.3. Let   be the Tanner graph for 2 ( )C B . Then   has girth 6.  

Proof.  

We will show that   does not have a 4 -cycle. The result follows from the fact that   has a 

6-cycle.  

It is sufficient to show that no column or row permutations of H  as given in Equation (10) give a 

sub-matrix of the form D  given in Equation (11).  
Observe that  

 TD D= .  (12) 

If the sub-matrix D  exists then it must come from columns of 1
TB − . With Equation (12), this 

means that D  is also a sub-matrix of 1B − .  

Since 1B −  is an incidence matrix of 1K − , this implies that two distinct edges of 1K −  are 

incident with the same pair of vertices of 1K −  which is impossible. Hence H  does not have a 

sub-matrix of the form D .  

We now show that T  has a 6-cycle. Notice that a sub-matrix  

 
1 1 0
1 0 1
0 1 1

E
 
 =  
 
 

 (13) 

of any parity-check matrix of an LDPC code results into a 6-cycle in the corresponding Tanner graph. We 

show that E  is a sub-matrix of H . Observe that  

 TE E= .  (14) 
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Since 3E B= , we conclude that E  is a sub-matrix of both 1B −  and 1
TB −  for any 4≥ .  

This implies that E  is a sub-matrix of H  which completes the proof.  

3.1. Message Passing Decoding of 2() 

We look at the extent to which either BF or SP can be used in decoding 2 ( )nC B . Consider the first 

1= −   positions and the last N −  positions of the sent codeword 1 2 ( )N C B, ..., ∈   . On whether 

a particular algorithm corrects errors or not depends on the position in which the errors occur. 

Theorem 3.4. Let 1 2 ( )N C B, ..., ∈    be sent through binary symmetric channel with parameter  . 

Then any errors occurring in the last N −  positions are not correctable by SP decoding.  

Proof. Let 1 N, ..,   be the received vector. Without loss of generality let   be the symbol 

received in error. We consider the case where 0=  and 1=  since the proof of the case where 

1=  and 0=  is similar. In this case the value of mr  is negative. We consider the value of L  

in Equation (6) after the first iteration. Recall that the  -th bit node is connected to only one check node 
so that we have  

 L E ,= + .     (15) 

If L  is positive, the hard decision gives symbol ‘0’ in the vector Z  described above. This would 

mean that the error has been corrected. We claim that L  is negative so that the symbol   does not 

change.  
To see that this is true, observe that by Equation (5) we have  

 E M r, ,| |<| |=| |      (16) 

in the first iteration. Since   is negative, the sign of L  is negative regardless of whether E ,   is 

positive or negative. In the next iteration the decoder starts with the same received symbol   which 

will again not be corrected. This continues until maximum number of iterations is attained. This completes 

the proof.  

Suppose 1 1 2 ( )N C B+,..., , , ...., ∈       is sent through the binary symmetric channel. Let 

0+ + =      be a typical check equation. In the first iteration of SP decoding we have  

 
1lnlr M M M, , ,

−
| |=| |=| |=| |= .     




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Write Equation (5) as  

 

1 tanh( 2) tanh( 2)
ln

1 tanh( 2) tanh( 2)

1 tanh( 2) tanh( 2)ln
1 tanh( 2) tanh( 2)

l

l

M M
E

M M

r r
r r

, ,
,

, ,

 + / /
=   − / / 

 + / /
= . − / / 

  

 

  

 

 

 (17) 

In Table 1 we give a few values of   and corresponding values of r| |  and E ,| |  . All values are 

expressed to 4 decimal places. From the table the following Equation appears to hold for values of   

satisfying 0 22≤ . :  

 2 E r,| |>| | .    (18) 

The following Theorem is based on the assumption that the parameter of the BSC satisfies 

0 22≤ . .  

 

  r| |  E ,| |   2 E ,× | |    

0 4.  0 4055.  0 08.  0 16.   
0 35.  0 6190.  0 1805.  0 361.   
0 3.  0 8473.  0 3228.  0 6456.   
0 25.  1 0986.  0 5108.  1 0216.   
0 23.  1 2083.  0 6006.  1 2012.   
0 22.  1 2656.  0 6491.  1 2982.   
0 21.  1 3249.  0 7001.  1 4002.   
0 20.  1 3863.  0 7538.  1 5075.   
0 1.  2 1972.  1 5164.  3 0328.   

Table 1. Values of  , r| |  and E ,| |   

Theorem 3.5. Let 1 1 2 ( )N C B+,..., , , ...., ∈       be sent through the binary symmetric channel 

with parameter 0 22≤ . . Then sum product decoding corrects the errors that occur in the first   

positions after a single iteration.  

Proof. Let 1 N, ..,   be a received vector. Without loss of generality let   be the distorted symbol 

where 1≤ ≤  . We only consider the case where 0=  and 1=  since the proof of the case where 

1=  and 0=  is very similar. In this case 
1lnr −

=




 is negative, since 1< −  . We need to 
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determine the sign of  

 
A

L r E ,
∈

= + .∑


   


 

Since each check node has degree 3, let  

 0+ + =      

be the parity-check equation at the  -th check node. Since 0= , either 0= =    or 1= =   . 

If both   and   are correctly transmitted, then either 0= =    or 1= =   . By Equation 

(17), E ,   is positive (a sign different from that of r ). The situation is the same if both   and   are 

received in error. However, if one of   and   is received in error the sign of E ,   is negative.  

Since 2A| |= −  , the number of E ,  ’s is 2− . Two situations make L  to be negative:  

a. 
A

E ,
∈
∑



 


 is negative 

b. i
A

r E ,
∈

| |>| |∑


 


.  

The first case is impossible, otherwise the number of E ,  s that are negative exceeds the number of 

those that are positive. This would mean that more than half of 2−  symbols are received in error.  

By Equation (18) the second case is only possible if the difference between negative E ,  s and 

positive ones is less than 2. We claim that the difference is at least 2. To see that this is true let   be the 

number of positive E ,  s and   be the number of negative E ,  s. If 2−  is even, then clearly −   

is not 1. Also this difference can not be equal to 0 since this would mean that half of 2−   s (or  s) 

are received in error, and plus   we have more than a correctable number of errors. Similarly for odd 

2− , −   can not be equal to 0 or 1.  

This shows that L  is positive. Hence the hard decision applied to the vector L  changes the bit   

from one back to zero. This completes the proof.  

While SP algorithm corrects errors occurring in the first   positions, BF algorithm does the 

opposite. As in the following Theorem, the errors are not corrected until all iterations are exhausted.  

Theorem 3.6. Let 1 2 ( )N C B, ..., ∈    be sent through binary symmetric channel with crossover 

probability p . Then errors occurring in any of the first   positions are not correctable by bit flipping 

decoding algorithm.  

Proof. Let 1 N, ..,   be received. Without loss of generality suppose   is received in error where 

1≤ ≤  . We only consider the case where 0=  and 1=  since the proof of the case where 1=  
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and 0=  is similar. Let  

 0+ + =      

be a check equation involving  . Recall that there are 2−  such equations for each bit  . 0=  

means 0= =    or 1= =   .  

If both   and   are sent correctly, then 0= =    or 1= =   . Consider the message  

 E , = +      

sent from the  -th check node to the  -th bit node. Clearly E ,   is zero, a value different from the 

received value  . However   has degree 1 which means it receives only one message  

 E , = + .      

If both   and   are 1, E , =  1 + 1 = 0 and if both   and   are 0 E ,   = 1 + 0 = 1. This 

means that   flips its current value, as E ,   is the only message received.  

Suppose the bit node   receives more messages which are different from its originally received 

value forcing it to change its value. Then after the first iteration the new vector will have zero which is the 

originally sent symbol. However, because of the change in value at  , the resulting vector will not be a 

valid codeword. After the next iteration   returns to its original value while   will have a wrong 

value. The situation continues in the other iterations until a maximum number of iterations is achieved.  

If one of   and   is received in error, then 0 1 1E , = + = =    which is still a wrong value.  

If both   and   are received in error then 0E , =   and 0E , =   if 1= =    and 1E , =   if 

0= =   . In this case the error at   is corrected.  

We claim that in more than 2
2
−  of the check equations, both of   and   are correctly 

transmitted. Otherwise there are more errors than a decoder can correct. These parity check equations 
make the error not to be corrected as explained above. We conclude that such an error is always not 

corrected. This completes the proof.  

The following Theorem states that BF corrects errors occurring in any of the last N −  positions. 

However the error symbol is corrected if the other symbols in its check equation are both transmitted 

either correctly or incorrectly.  
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Theorem 3.7. In the transmitted codeword 1 2 ( )N C B, ..., ∈    let  , 1 N+ ≤ ≤   be 

received in error. Suppose 0+ + =      is the check equation involving  . If both   and   are 

either transmitted correctly or incorrectly, then bit flipping decoding algorithm corrects   after a single 

iteration.  

Proof. Let 1 N, ..,   be received. It suffices to consider the case where 0=  and 1= . Since 

  and   are both transmitted either correctly or incorrectly, we have  

 0+ = + = .        

Hence the message from the  -th check node to the  -th bit node in the first iteration is  

 0E , = + = .      

The  -th bit node, therefore, changes its value from the received 1 to 0 since E ,   is the only 

message it receives. This completes the proof.  
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